Model-based clustering of probability density functions
Angela Montanari and
Daniela Calò ()
Advances in Data Analysis and Classification, 2013, vol. 7, issue 3, 319 pages
Abstract:
Complex data such as those where each statistical unit under study is described not by a single observation (or vector variable), but by a unit-specific sample of several or even many observations, are becoming more and more popular. Reducing these sample data by summary statistics, like the average or the median, implies that most inherent information (about variability, skewness or multi-modality) gets lost. Full information is preserved only if each unit is described by a whole distribution. This new kind of data, a.k.a. “distribution-valued data”, require the development of adequate statistical methods. This paper presents a method to group a set of probability density functions (pdfs) into homogeneous clusters, provided that the pdfs have to be estimated nonparametrically from the unit-specific data. Since elements belonging to the same cluster are naturally thought of as samples from the same probability model, the idea is to tackle the clustering problem by defining and estimating a proper mixture model on the space of pdfs. The issue of model building is challenging here because of the infinite-dimensionality and the non-Euclidean geometry of the domain space. By adopting a wavelet-based representation for the elements in the space, the task is accomplished by using mixture models for hyper-spherical data. The proposed solution is illustrated through a simulation experiment and on two real data sets. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Mixture models; Wavelet density estimation; Hyper-spherical data; Von Mises-Fisher distribution; 62H30; 62G07; 62H11 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0140-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:7:y:2013:i:3:p:301-319
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-013-0140-8
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().