EconPapers    
Economics at your fingertips  
 

Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas

Nema Dean () and Rebecca Nugent

Advances in Data Analysis and Classification, 2013, vol. 7, issue 3, 339-357

Abstract: This paper presents a finite mixture of multivariate betas as a new model-based clustering method tailored to applications where the feature space is constrained to the unit hypercube. The mixture component densities are taken to be conditionally independent, univariate unimodal beta densities (from the subclass of reparameterized beta densities given by Bagnato and Punzo in Comput Stat 28(4): 10.1007/s00180-012-367-4 , 2013 ). The EM algorithm used to fit this mixture is discussed in detail, and results from both this beta mixture model and the more standard Gaussian model-based clustering are presented for simulated skill mastery data from a common cognitive diagnosis model and for real data from the Assistment System online mathematics tutor (Feng et al. in J User Model User Adap Inter 19(3):243–266, 2009 ). The multivariate beta mixture appears to outperform the standard Gaussian model-based clustering approach, as would be expected on the constrained space. Fewer components are selected (by BIC-ICL) in the beta mixture than in the Gaussian mixture, and the resulting clusters seem more reasonable and interpretable. Copyright Springer-Verlag Berlin Heidelberg 2013

Keywords: Mixture model clustering; Multivariate beta densities; Skill set profiles; Unit hypercube; 62H30 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0149-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:7:y:2013:i:3:p:339-357

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-013-0149-z

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:7:y:2013:i:3:p:339-357