EconPapers    
Economics at your fingertips  
 

Principal differential analysis of the Aneurisk65 data set

Matilde Dalla Rosa (), Laura Sangalli () and Simone Vantini ()

Advances in Data Analysis and Classification, 2014, vol. 8, issue 3, 287-302

Abstract: We explore the use of principal differential analysis as a tool for performing dimensional reduction of functional data sets. In particular, we compare the results provided by principal differential analysis and by functional principal component analysis in the dimensional reduction of three synthetic data sets, and of a real data set concerning 65 three-dimensional cerebral geometries, the AneuRisk65 data set. The analyses show that principal differential analysis can provide an alternative and effective representation of functional data, easily interpretable in terms of exponential, sinusoidal, or damped-sinusoidal functions and providing a different insight to the functional data set under investigation. Moreover, in the analysis of the AneuRisk65 data set, principal differential analysis is able to detect interesting features of the data, such as the rippling effect of the vessel surface, that functional principal component analysis is not able to detect. Copyright Springer-Verlag Berlin Heidelberg 2014

Keywords: Functional data analysis; Dimensional reduction; Principal differential analysis; Functional principal component analysis; 62H30; 62H25; 62P10 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-014-0175-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:8:y:2014:i:3:p:287-302

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-014-0175-5

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:8:y:2014:i:3:p:287-302