Hilbertian spatial periodically correlated first order autoregressive models
H. Haghbin,
Z. Shishebor () and
A. Soltani
Advances in Data Analysis and Classification, 2014, vol. 8, issue 3, 303-319
Abstract:
In this article, we consider Hilbertian spatial periodically correlated autoregressive models. Such a spatial model assumes periodicity in its autocorrelation function. Plausibly, it explains spatial functional data resulted from phenomena with periodic structures, as geological, atmospheric, meteorological and oceanographic data. Our studies on these models include model building, existence, time domain moving average representation, least square parameter estimation and prediction based on the autoregressive structured past data. We also fit a model of this type to a real data of invisible infrared satellite images. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Hilbert spaces; Spatial autoregressive random fields; Periodically correlated processes; Functional data; 62M30; 62M40 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-014-0172-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:8:y:2014:i:3:p:303-319
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-014-0172-8
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().