Clustering of financial time series in risky scenarios
Fabrizio Durante (),
Roberta Pappadà () and
Nicola Torelli ()
Advances in Data Analysis and Classification, 2014, vol. 8, issue 4, 359-376
Abstract:
A methodology is presented for clustering financial time series according to the association in the tail of their distribution. The procedure is based on the calculation of suitable pairwise conditional Spearman’s correlation coefficients extracted from the series. The performance of the method has been tested via a simulation study. As an illustration, an analysis of the components of the Italian FTSE–MIB is presented. The results could be applied to construct financial portfolios that can manage to reduce the risk in case of simultaneous large losses in several markets. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Cluster analysis; Copula; Spearman’s correlation; Tail dependence; 62H30; 62H20; 62M10 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0160-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:8:y:2014:i:4:p:359-376
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-013-0160-4
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().