Spline-based nonlinear biplots
Patrick Groenen (),
Niël Roux () and
Sugnet Gardner-Lubbe ()
Advances in Data Analysis and Classification, 2015, vol. 9, issue 2, 219-238
Abstract:
Biplots are helpful tools to establish the relations between samples and variables in a single plot. Most biplots use a projection interpretation of sample points onto linear lines representing variables. These lines can have marker points to make it easy to find the reconstructed value of the sample point on that variable. For classical multivariate techniques such as principal components analysis, such linear biplots are well established. Other visualization techniques for dimension reduction, such as multidimensional scaling, focus on an often nonlinear mapping in a low dimensional space with emphasis on the representation of the samples. In such cases, the linear biplot can be too restrictive to properly describe the relations between the samples and the variables. In this paper, we propose a simple nonlinear biplot that represents the marker points of a variable on a curved line that is governed by splines. Its main attraction is its simplicity of interpretation: the reconstructed value of a sample point on a variable is the value of the closest marker point on the smooth curved line representing the variable. The proposed spline-based biplot can never lead to a worse overall sample fit of the variable as it contains the linear biplot as a special case. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Biplot; Multidimensional scaling; Principal components analysis; Splines; 62H25 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-014-0179-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:9:y:2015:i:2:p:219-238
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-014-0179-1
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().