An efficient simultaneous method for the constrained multiple-sets split feasibility problem
Wenxing Zhang (),
Deren Han () and
Xiaoming Yuan ()
Computational Optimization and Applications, 2012, vol. 52, issue 3, 825-843
Abstract:
The multiple-sets split feasibility problem (MSFP) captures various applications arising in many areas. Recently, by introducing a function measuring the proximity to the involved sets, Censor et al. proposed to solve the MSFP via minimizing the proximity function, and they developed a class of simultaneous methods to solve the resulting constrained optimization model numerically. In this paper, by combining the ideas of the proximity function and the operator splitting methods, we propose an efficient simultaneous method for solving the constrained MSFP. The efficiency of the new method is illustrated by some numerical experiments. Copyright Springer Science+Business Media, LLC 2012
Keywords: Convex feasibility problem; Multiple-sets split feasibility problem; Simultaneous method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-011-9429-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:52:y:2012:i:3:p:825-843
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-011-9429-8
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().