EconPapers    
Economics at your fingertips  
 

A local relaxation method for the cardinality constrained portfolio optimization problem

Walter Murray () and Howard Shek ()

Computational Optimization and Applications, 2012, vol. 53, issue 3, 709 pages

Abstract: The NP-hard nature of cardinality constrained mean-variance portfolio optimization problems has led to a number of different algorithms with varying degrees of success in reaching optimality given limited computational resources and under the presence of strict time constraints present in practice. The proposed local relaxation algorithm explores the inherent structure of the objective function. It solves a sequence of small, local, quadratic-programs by first projecting asset returns onto a reduced metric space, followed by clustering in this space to identify sub-groups of assets that best accentuate a suitable measure of similarity amongst different assets. The algorithm can either be cold started using a suitable heuristic method such as the centroids of initial clusters or be warm started based on the last output. Results, using a basket of up to 3,000 stocks and with different cardinality constraints, indicates that the proposed algorithm can lead to significant performance gain over popular branch-and-cut methods. One key application of this algorithm is in dealing with large scale cardinality constrained portfolio optimization under tight time constraint, such as for the purpose of index tracking or index arbitrage at high frequency. Copyright Springer Science+Business Media, LLC 2012

Keywords: Portfolio optimization; Local relaxation method; Nonlinear programming; Cardinality constrained optimization (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9471-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:3:p:681-709

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9471-1

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:681-709