EconPapers    
Economics at your fingertips  
 

Descentwise inexact proximal algorithms for smooth optimization

Marc Fuentes, Jérôme Malick () and Claude Lemaréchal

Computational Optimization and Applications, 2012, vol. 53, issue 3, 755-769

Abstract: The proximal method is a standard regularization approach in optimization. Practical implementations of this algorithm require (i) an algorithm to compute the proximal point, (ii) a rule to stop this algorithm, (iii) an update formula for the proximal parameter. In this work we focus on (ii), when smoothness is present—so that Newton-like methods can be used for (i): we aim at giving adequate stopping rules to reach overall efficiency of the method. Roughly speaking, usual rules consist in stopping inner iterations when the current iterate is close to the proximal point. By contrast, we use the standard paradigm of numerical optimization: the basis for our stopping test is a “sufficient” decrease of the objective function, namely a fraction of the ideal decrease. We establish convergence of the algorithm thus obtained and we illustrate it on some ill-conditioned problems. The experiments show that combining the proposed inexact proximal scheme with a standard smooth optimization algorithm improves the numerical behaviour of the latter for those ill-conditioned problems. Copyright Springer Science+Business Media, LLC 2012

Keywords: Proximal algorithm; Quasi-Newton algorithms; Convex analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9461-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:3:p:755-769

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9461-3

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:755-769