An inexact restoration strategy for the globalization of the sSQP method
D. Fernández (),
E. Pilotta () and
G. Torres ()
Computational Optimization and Applications, 2013, vol. 54, issue 3, 595-617
Abstract:
A globally convergent algorithm based on the stabilized sequential quadratic programming (sSQP) method is presented in order to solve optimization problems with equality constraints and bounds. This formulation has attractive features in the sense that constraint qualifications are not needed at all. In contrast with classic globalization strategies for Newton-like methods, we do not make use of merit functions. Our scheme is based on performing corrections on the solutions of the subproblems by using an inexact restoration procedure. The presented method is well defined and any accumulation point of the generated primal sequence is either a Karush-Kuhn-Tucker point or a stationary (maybe feasible) point of the problem of minimizing the infeasibility. Also, under suitable hypotheses, the sequence generated by the algorithm converges Q-linearly. Numerical experiments are given to confirm theoretical results. Copyright Springer Science+Business Media, LLC 2013
Keywords: Sequential quadratic programming; Nonlinear programming; Global convergence; Augmented Lagrangian (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9502-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:54:y:2013:i:3:p:595-617
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9502-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().