EconPapers    
Economics at your fingertips  
 

SDP reformulation for robust optimization problems based on nonconvex QP duality

Ryoichi Nishimura (), Shunsuke Hayashi () and Masao Fukushima ()

Computational Optimization and Applications, 2013, vol. 55, issue 1, 47 pages

Abstract: In a real situation, optimization problems often involve uncertain parameters. Robust optimization is one of distribution-free methodologies based on worst-case analyses for handling such problems. In this paper, we first focus on a special class of uncertain linear programs (LPs). Applying the duality theory for nonconvex quadratic programs (QPs), we reformulate the robust counterpart as a semidefinite program (SDP) and show the equivalence property under mild assumptions. We also apply the same technique to the uncertain second-order cone programs (SOCPs) with “single” (not side-wise) ellipsoidal uncertainty. Then we derive similar results on the reformulation and the equivalence property. In the numerical experiments, we solve some test problems to demonstrate the efficiency of our reformulation approach. Especially, we compare our approach with another recent method based on Hildebrand’s Lorentz positivity. Copyright Springer Science+Business Media New York 2013

Keywords: Robust optimization; Second-order cone programming; Semidefinite programming; Nonconvex quadratic programming (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9520-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:55:y:2013:i:1:p:21-47

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9520-9

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:55:y:2013:i:1:p:21-47