CARTopt: a random search method for nonsmooth unconstrained optimization
B. Robertson,
C. Price () and
M. Reale
Computational Optimization and Applications, 2013, vol. 56, issue 2, 315 pages
Abstract:
A random search algorithm for unconstrained local nonsmooth optimization is described. The algorithm forms a partition on $\mathbb{R}^{n}$ using classification and regression trees (CART) from statistical pattern recognition. The CART partition defines desirable subsets where the objective function f is relatively low, based on previous sampling, from which further samples are drawn directly. Alternating between partition and sampling phases provides an effective method for nonsmooth optimization. The sequence of iterates {z k } is shown to converge to an essential local minimizer of f with probability one under mild conditions. Numerical results are presented to show that the method is effective and competitive in practice. Copyright Springer Science+Business Media New York 2013
Keywords: Nonsmooth optimization; CART; Partitioning random search; Numerical results (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9560-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:56:y:2013:i:2:p:291-315
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-013-9560-9
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().