Symmetric Perry conjugate gradient method
Dongyi Liu () and
Genqi Xu ()
Computational Optimization and Applications, 2013, vol. 56, issue 2, 317-341
Abstract:
A family of new conjugate gradient methods is proposed based on Perry’s idea, which satisfies the descent property or the sufficient descent property for any line search. In addition, based on the scaling technology and the restarting strategy, a family of scaling symmetric Perry conjugate gradient methods with restarting procedures is presented. The memoryless BFGS method and the SCALCG method are the special forms of the two families of new methods, respectively. Moreover, several concrete new algorithms are suggested. Under Wolfe line searches, the global convergence of the two families of the new methods is proven by the spectral analysis for uniformly convex functions and nonconvex functions. The preliminary numerical comparisons with CG_DESCENT and SCALCG algorithms show that these new algorithms are very effective algorithms for the large-scale unconstrained optimization problems. Finally, a remark for further research is suggested. Copyright The Author(s) 2013
Keywords: Conjugate gradient method; Descent property; Spectral analysis; Global convergence (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9558-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:56:y:2013:i:2:p:317-341
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-013-9558-3
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().