An efficient augmented Lagrangian method with applications to total variation minimization
Chengbo Li (),
Wotao Yin (),
Hong Jiang () and
Yin Zhang ()
Computational Optimization and Applications, 2013, vol. 56, issue 3, 507-530
Abstract:
Based on the classic augmented Lagrangian multiplier method, we propose, analyze and test an algorithm for solving a class of equality-constrained non-smooth optimization problems (chiefly but not necessarily convex programs) with a particular structure. The algorithm effectively combines an alternating direction technique with a nonmonotone line search to minimize the augmented Lagrangian function at each iteration. We establish convergence for this algorithm, and apply it to solving problems in image reconstruction with total variation regularization. We present numerical results showing that the resulting solver, called TVAL3, is competitive with, and often outperforms, other state-of-the-art solvers in the field. Copyright Springer Science+Business Media New York 2013
Keywords: Compressive sensing; Non-smooth optimization; Augmented Lagrangian method; Nonmonotone line search; Barzilai-Borwein method; Single-pixel camera (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9576-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:56:y:2013:i:3:p:507-530
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-013-9576-1
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().