EconPapers    
Economics at your fingertips  
 

Advanced particle swarm assisted genetic algorithm for constrained optimization problems

Manoj Dhadwal (), Sung Jung () and Chang Kim ()

Computational Optimization and Applications, 2014, vol. 58, issue 3, 806 pages

Abstract: A novel hybrid evolutionary algorithm is developed based on the particle swarm optimization (PSO) and genetic algorithms (GAs). The PSO phase involves the enhancement of worst solutions by using the global-local best inertia weight and acceleration coefficients to increase the efficiency. In the genetic algorithm phase, a new rank-based multi-parent crossover is used by modifying the crossover and mutation operators which favors both the local and global exploration simultaneously. In addition, the Euclidean distance-based niching is implemented in the replacement phase of the GA to maintain the population diversity. To avoid the local optimum solutions, the stagnation check is performed and the solution is randomized when needed. The constraints are handled using an effective feasible population based approach. The parameters are self-adaptive requiring no tuning based on the type of problems. Numerical simulations are performed first to evaluate the current algorithm for a set of 24 benchmark constrained nonlinear optimization problems. The results demonstrate reasonable correlation and high quality optimum solutions with significantly less function evaluations against other state-of-the-art heuristic-based optimization algorithms. The algorithm is also applied to various nonlinear engineering optimization problems and shown to be excellent in searching for the global optimal solutions. Copyright Springer Science+Business Media New York 2014

Keywords: Evolutionary computation; Particle swarm; Genetic algorithm; Rank-based multi-parent crossover; Constrained optimization; Feasible population (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9637-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:58:y:2014:i:3:p:781-806

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-014-9637-0

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:58:y:2014:i:3:p:781-806