Novel update techniques for the revised simplex method
Qi Huangfu and
J. Hall ()
Computational Optimization and Applications, 2015, vol. 60, issue 3, 587-608
Abstract:
This paper introduces three novel techniques for updating the invertible representation of the basis matrix when solving practical sparse linear programming problems using a high performance implementation of the dual revised simplex method, being of particular value when suboptimization is used. Two are variants of the product form update and the other permits multiple Forrest–Tomlin updates to be performed. Computational results show that one of the product form variants is significantly more efficient than the traditional approach, with its performance approaching that of the Forrest–Tomlin update for some problems. The other is less efficient, but valuable in the context of the dual revised simplex method with suboptimization. Results show that the multiple Forrest–Tomlin updates are performed with no loss of serial efficiency. Copyright Springer Science+Business Media New York 2015
Keywords: Linear programming; Dual revised simplex method; Sparse matrices; Basis inverse update techniques; 90C05; 65F05 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9689-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:60:y:2015:i:3:p:587-608
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-014-9689-1
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().