Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems
Markus Dihlmann () and
Bernard Haasdonk ()
Computational Optimization and Applications, 2015, vol. 60, issue 3, 753-787
Abstract:
We consider parameter optimization problems which are subject to constraints given by parametrized partial differential equations. Discretizing this problem may lead to a large-scale optimization problem which can hardly be solved rapidly. In order to accelerate the process of parameter optimization we will use a reduced basis surrogate model for numerical optimization. For many optimization methods sensitivity information about the functional is needed. In the following we will show that this derivative information can be calculated efficiently in the reduced basis framework in the case of a general linear output functional and parametrized evolution problems with linear parameter separable operators. By calculating the sensitivity information directly instead of applying the more widely used adjoint approach we can rapidly optimize different cost functionals using the same reduced basis model. Furthermore, we will derive rigorous a-posteriori error estimators for the solution, the gradient and the optimal parameters, which can all be computed online. The method will be applied to two parameter optimization problems with an underlying advection-diffusion equation. Copyright Springer Science+Business Media New York 2015
Keywords: PDE-constrained optimization; Reduced order modeling; Reduced basis method; Surrogate model; Parameter optimization; A-posteriori error estimation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9697-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:60:y:2015:i:3:p:753-787
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-014-9697-1
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().