EconPapers    
Economics at your fingertips  
 

A dual gradient-projection method for large-scale strictly convex quadratic problems

Nicholas I. M. Gould () and Daniel P. Robinson ()
Additional contact information
Nicholas I. M. Gould: STFC-Rutherford Appleton Laboratory
Daniel P. Robinson: The Johns Hopkins University

Computational Optimization and Applications, 2017, vol. 67, issue 1, No 1, 38 pages

Abstract: Abstract The details of a solver for minimizing a strictly convex quadratic objective function subject to general linear constraints are presented. The method uses a gradient projection algorithm enhanced with subspace acceleration to solve the bound-constrained dual optimization problem. Such gradient projection methods are well-known, but are typically employed to solve the primal problem when only simple bound-constraints are present. The main contributions of this work are threefold. First, we address the challenges associated with solving the dual problem, which is usually a convex problem even when the primal problem is strictly convex. In particular, for the dual problem, one must efficiently compute directions of infinite descent when they exist, which is precisely when the primal formulation is infeasible. Second, we show how the linear algebra may be arranged to take computational advantage of sparsity that is often present in the second-derivative matrix, mostly by showing how sparse updates may be performed for algorithmic quantities. We consider the case that the second-derivative matrix is explicitly available and sparse, and the case when it is available implicitly via a limited memory BFGS representation. Third, we present the details of our Fortran 2003 software package DQP, which is part of the GALAHAD suite of optimization routines. Numerical tests are performed on quadratic programming problems from the combined CUTEst and Maros and Meszaros test sets.

Keywords: Convex optimization; Quadratic programming; Gradient projection; Large-scale optimization; Sparse factorizations; Dual method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-016-9886-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9886-1

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-016-9886-1

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9886-1