EconPapers    
Economics at your fingertips  
 

Mesh adaptive direct search with simplicial Hessian update

Árpád Bűrmen () and Iztok Fajfar
Additional contact information
Árpád Bűrmen: University of Ljubljana
Iztok Fajfar: University of Ljubljana

Computational Optimization and Applications, 2019, vol. 74, issue 3, No 3, 645-667

Abstract: Abstract Recently a second directional derivative-based Hessian updating formula was used for Hessian approximation in mesh adaptive direct search (MADS). The approach combined with a quadratic program solver significantly improves the performance of MADS. Unfortunately it imposes some strict requirements on the position of points and the order in which they are evaluated. The subject of this paper is the introduction of a Hessian update formula that utilizes the points from the neighborhood of the incumbent solution without imposing such strict restrictions. The obtained approximate Hessian can then be used for constructing a quadratic model of the objective and the constraints. The proposed algorithm was compared to the reference implementation of MADS (NOMAD) on four sets of test problems. On all but one of them it outperformed NOMAD. The biggest performance difference was observed on constrained problems. To validate the algorithm further the approach was tested on several real-world optimization problems arising from yield approximation and worst case analysis in integrated circuit design. On all tested problems the proposed approach outperformed NOMAD.

Keywords: Derivative-free optimization; Hessian update; Random matrices; Uniform distribution; 90C56; 65K05; 15A52 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00133-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:74:y:2019:i:3:d:10.1007_s10589-019-00133-6

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-019-00133-6

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:74:y:2019:i:3:d:10.1007_s10589-019-00133-6