EconPapers    
Economics at your fingertips  
 

Convergence study of indefinite proximal ADMM with a relaxation factor

Min Tao ()
Additional contact information
Min Tao: Nanjing University

Computational Optimization and Applications, 2020, vol. 77, issue 1, No 4, 123 pages

Abstract: Abstract The alternating direction method of multipliers (ADMM) is widely used to solve separable convex programming problems. At each iteration, the classical ADMM solves the subproblems exactly. For many problems arising from practical applications, it is usually impossible or too expensive to obtain the exact solution of a subproblem. To overcome this, a special proximal term is added to ease the solvability of a subproblem. In the literature, the proximal term can be relaxed to be indefinite while still with a convergence guarantee; this relaxation permits the adoption of larger step sizes to solve the subproblem, which particularly accelerates its performance. A large value of the relaxation factor introduced in the dual step of ADMM also plays a vital role in accelerating its performance. However, it is still not clear whether these two acceleration strategies can be used simultaneously with no restriction on the penalty parameter. In this paper, we answer this question affirmatively and conduct a rigorous convergence analysis for indefinite proximal ADMM with a relaxation factor (IP-ADMM $$_{r}$$ r ), reveal the relationships between the parameter in the indefinite proximal term and the relaxation factor to ensure its global convergence, and establish the worst-case convergence rate in the ergodic sense. Finally, some numerical results on basis pursuit and total variation-based denoising with box constraint problems are presented to verify the efficiency of IP-ADMM $$_{r}$$ r .

Keywords: Convex programming; Alternating direction method of multipliers; Proximal alternating direction method of multipliers; Step size; Convergence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00206-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:77:y:2020:i:1:d:10.1007_s10589-020-00206-x

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-020-00206-x

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:77:y:2020:i:1:d:10.1007_s10589-020-00206-x