Riemannian conjugate gradient methods with inverse retraction
Xiaojing Zhu () and
Hiroyuki Sato
Additional contact information
Xiaojing Zhu: Shanghai University of Electric Power
Hiroyuki Sato: Kyoto University
Computational Optimization and Applications, 2020, vol. 77, issue 3, No 8, 779-810
Abstract:
Abstract We propose a new class of Riemannian conjugate gradient (CG) methods, in which inverse retraction is used instead of vector transport for search direction construction. In existing methods, differentiated retraction is often used for vector transport to move the previous search direction to the current tangent space. However, a different perspective is adopted here, motivated by the fact that inverse retraction directly measures the displacement from the current to the previous points in terms of tangent vectors at the current point. The proposed algorithm is implemented with the Fletcher–Reeves and the Dai–Yuan formulae, respectively, and global convergence is established using modifications of the Riemannian Wolfe conditions. Computational details of the practical inverse retractions over the Stiefel and fixed-rank manifolds are discussed. Numerical results obtained for the Brockett cost function minimization problem, the joint diagonalization problem, and the low-rank matrix completion problem demonstrate the potential effectiveness of Riemannian CG with inverse retraction.
Keywords: Riemannian optimization; Conjugate gradient method; Retraction; Inverse retraction; Stiefel manifold; Fixed-rank manifold (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00219-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:77:y:2020:i:3:d:10.1007_s10589-020-00219-6
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-020-00219-6
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().