Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
Caroline Geiersbach () and
Teresa Scarinci ()
Additional contact information
Caroline Geiersbach: Weierstrass Institute
Teresa Scarinci: University of L’Aquila
Computational Optimization and Applications, 2021, vol. 78, issue 3, No 2, 705-740
Abstract:
Abstract For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic proximal gradient method applied to Hilbert spaces, motivated by optimization problems with partial differential equation (PDE) constraints with random inputs and coefficients. We study stochastic algorithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex and the nonconvex part is the expectation, which is assumed to have a Lipschitz continuous gradient. The optimization variable is an element of a Hilbert space. We show almost sure convergence of strong limit points of the random sequence generated by the algorithm to stationary points. We demonstrate the stochastic proximal gradient algorithm on a tracking-type functional with a $$L^1$$ L 1 -penalty term constrained by a semilinear PDE and box constraints, where input terms and coefficients are subject to uncertainty. We verify conditions for ensuring convergence of the algorithm and show a simulation.
Keywords: Stochastic programming; Nonsmooth and nonconvex optimization; Differential inclusions; Mathematical programming methods; Partial differential equations with randomness; Optimal control problems involving partial differential equations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00259-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:78:y:2021:i:3:d:10.1007_s10589-020-00259-y
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-020-00259-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().