Conditional gradient method for vector optimization
Wang Chen (),
Xinmin Yang () and
Yong Zhao ()
Additional contact information
Wang Chen: Sichuan University
Xinmin Yang: Chongqing Normal University
Yong Zhao: Chongqing Jiaotong University
Computational Optimization and Applications, 2023, vol. 85, issue 3, No 7, 857-896
Abstract:
Abstract In this paper, we propose a conditional gradient method for solving constrained vector optimization problems with respect to a partial order induced by a closed, convex and pointed cone with nonempty interior. When the partial order under consideration is the one induced by the non-negative orthant, we regain the method for multiobjective optimization recently proposed by Assunção et al. (Comput Optim Appl 78(3):741–768, 2021). In our method, the construction of the auxiliary subproblem is based on the well-known oriented distance function. Three different types of step size strategies (Armijo, adaptative and nonmonotone) are considered. Without convexity assumption related to the objective function, we obtain the stationarity of accumulation points of the sequences produced by the proposed method equipped with the Armijo or the nonmonotone step size rule. To obtain the convergence result of the method with the adaptative step size strategy, we introduce a useful cone convexity condition which allows us to circumvent the intricate question of the Lipschitz continuity of Jocabian for the objective function. This condition helps us to generalize the classical descent lemma to the vector optimization case. Under convexity assumption for the objective function, it is proved that all accumulation points of any generated sequences obtained by our method are weakly efficient solutions. Numerical experiments illustrating the practical behavior of the methods are presented.
Keywords: Vector optimization; Conditional gradient method; Stationary point; Convergence; C-convexity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00478-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:85:y:2023:i:3:d:10.1007_s10589-023-00478-z
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00478-z
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().