DC semidefinite programming and cone constrained DC optimization II: local search methods
M. V. Dolgopolik ()
Additional contact information
M. V. Dolgopolik: Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Computational Optimization and Applications, 2023, vol. 85, issue 3, No 11, 993-1031
Abstract:
Abstract The second part of our study is devoted to a detailed convergence analysis of two extensions of the well-known DCA method for solving DC (Difference of Convex functions) optimization problems to the case of general cone constrained DC optimization problems. We study the global convergence of the DCA for cone constrained problems and present a comprehensive analysis of a version of the DCA utilizing exact penalty functions. In particular, we study the exactness property of the penalized convex subproblems and provide two types of sufficient conditions for the convergence of the exact penalty method to a feasible and critical point of a cone constrained DC optimization problem from an infeasible starting point. In the numerical section of this work, the exact penalty DCA is applied to the problem of computing compressed modes for variational problems and the sphere packing problem on Grassmannian.
Keywords: DC optimization; DCA; Semidefinite programming; Cone constrained optimization; Compressed modes; Sphere packing; Grassmannian; 90C22; 90C26 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00479-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:85:y:2023:i:3:d:10.1007_s10589-023-00479-y
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00479-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().