EconPapers    
Economics at your fingertips  
 

A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming

David Ek () and Anders Forsgren ()
Additional contact information
David Ek: KTH Royal Institute of Technology
Anders Forsgren: KTH Royal Institute of Technology

Computational Optimization and Applications, 2023, vol. 86, issue 1, No 1, 48 pages

Abstract: Abstract The focus in this work is on interior-point methods for inequality-constrained quadratic programs, and particularly on the system of nonlinear equations to be solved for each value of the barrier parameter. Newton iterations give high quality solutions, but we are interested in modified Newton systems that are computationally less expensive at the expense of lower quality solutions. We propose a structured modified Newton approach where each modified Jacobian is composed of a previous Jacobian, plus one low-rank update matrix per succeeding iteration. Each update matrix is, for a given rank, chosen such that the distance to the Jacobian at the current iterate is minimized, in both 2-norm and Frobenius norm. The approach is structured in the sense that it preserves the nonzero pattern of the Jacobian. The choice of update matrix is supported by results in an ideal theoretical setting. We also produce numerical results with a basic interior-point implementation to investigate the practical performance within and beyond the theoretical framework. In order to improve performance beyond the theoretical framework, we also motivate and construct two heuristics to be added to the method.

Keywords: Interior-point methods; Modified Newton methods; Quasi-Newton methods; Low-rank updates (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00486-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00486-z

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-023-00486-z

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00486-z