EconPapers    
Economics at your fingertips  
 

Local convergence of primal–dual interior point methods for nonlinear semidefinite optimization using the Monteiro–Tsuchiya family of search directions

Takayuki Okuno ()
Additional contact information
Takayuki Okuno: Seikei University

Computational Optimization and Applications, 2024, vol. 88, issue 2, No 9, 677-718

Abstract: Abstract The recent advance of algorithms for nonlinear semidefinite optimization problems (NSDPs) is remarkable. Yamashita et al. first proposed a primal–dual interior point method (PDIPM) for solving NSDPs using the family of Monteiro–Zhang (MZ) search directions. Since then, various kinds of PDIPMs have been proposed for NSDPs, but, as far as we know, all of them are based on the MZ family. In this paper, we present a PDIPM equipped with the family of Monteiro–Tsuchiya (MT) directions, which were originally devised for solving linear semidefinite optimization problems as were the MZ family. We further prove local superlinear convergence to a Karush–Kuhn–Tucker point of the NSDP in the presence of certain general assumptions on scaling matrices, which are used in producing the MT search directions. Finally, we conduct numerical experiments to compare the efficiency among members of the MT family.

Keywords: Nonlinear semidefinite optimization problem; Primal–dual interior point method; Monteiro–Tsuchiya family of directions; Local convergence (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-024-00562-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:88:y:2024:i:2:d:10.1007_s10589-024-00562-y

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-024-00562-y

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:coopap:v:88:y:2024:i:2:d:10.1007_s10589-024-00562-y