EconPapers    
Economics at your fingertips  
 

Practical gradient and conjugate gradient methods on flag manifolds

Xiaojing Zhu () and Chungen Shen
Additional contact information
Xiaojing Zhu: Shanghai University of Electric Power
Chungen Shen: University of Shanghai for Science and Technology

Computational Optimization and Applications, 2024, vol. 88, issue 2, No 4, 524 pages

Abstract: Abstract Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.

Keywords: Manifold optimization; Flag manifold; Riemannian gradient method; Riemannian conjugate gradient method; 65K05; 90C06; 90C30; 90C48 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-024-00568-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:88:y:2024:i:2:d:10.1007_s10589-024-00568-6

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-024-00568-6

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:coopap:v:88:y:2024:i:2:d:10.1007_s10589-024-00568-6