Measures of multivariate asymptotic dependence and their relation to spectral expansions
Melanie Frick ()
Metrika: International Journal for Theoretical and Applied Statistics, 2012, vol. 75, issue 6, 819-831
Abstract:
Asymptotic dependence can be interpreted as the property that realizations of the single components of a random vector occur simultaneously with a high probability. Information about the asymptotic dependence structure can be captured by dependence measures like the tail dependence parameter or the residual dependence index. We introduce these measures in the bivariate framework and extend them to the multivariate case afterwards. Within the extreme value theory one can model asymptotic dependence structures by Pickands dependence functions and spectral expansions. Both in the bivariate and in the multivariate case we also compute the tail dependence parameter and the residual dependence index on the basis of this statistical model. They take a specific shape then and are related to the Pickands dependence function and the exponent of variation of the underlying density expansion. Copyright Springer-Verlag 2012
Keywords: Asymptotic dependence structure; Tail dependence parameter; Residual dependence index; Spectral expansion; Pickands dependence function (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00184-011-0354-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:metrik:v:75:y:2012:i:6:p:819-831
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/184/PS2
DOI: 10.1007/s00184-011-0354-8
Access Statistics for this article
Metrika: International Journal for Theoretical and Applied Statistics is currently edited by U. Kamps and Norbert Henze
More articles in Metrika: International Journal for Theoretical and Applied Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().