Estimating the Correlation in Bivariate Normal Data With Known Variances and Small Sample Sizes
Bailey K. Fosdick and
Adrian E. Raftery
The American Statistician, 2012, vol. 66, issue 1, 34-41
Abstract:
We consider the problem of estimating the correlation in bivariate normal data when the means and variances are assumed known, with emphasis on the small sample case. We consider eight different estimators, several of them considered here for the first time in the literature. In a simulation study, we found that Bayesian estimators using the uniform and arc-sine priors outperformed several empirical and exact or approximate maximum likelihood estimators in small samples. The arc-sine prior did better for large values of the correlation. For testing whether the correlation is zero, we found that Bayesian hypothesis tests outperformed significance tests based on the empirical and exact or approximate maximum likelihood estimators considered in small samples, but that all tests performed similarly for sample size 50. These results lead us to suggest using the posterior mean with the arc-sine prior to estimate the correlation in small samples when the variances are assumed known.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2012.676329 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:66:y:2012:i:1:p:34-41
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2012.676329
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().