A Simple Density-Based Empirical Likelihood Ratio Test for Independence
Albert Vexler,
Wan-Min Tsai and
Alan D. Hutson
The American Statistician, 2014, vol. 68, issue 3, 158-169
Abstract:
We develop a novel nonparametric likelihood ratio test for independence between two random variables using a technique that is free of the common constraints of defining a given set of specific dependence structures. Our methodology revolves around an exact density-based empirical likelihood ratio test statistic that approximates in a distribution-free fashion the corresponding most powerful parametric likelihood ratio test. We demonstrate that the proposed test is very powerful in detecting general structures of dependence between two random variables, including nonlinear and/or random-effect dependence structures. An extensive Monte Carlo study confirms that the proposed test is superior to the classical nonparametric procedures across a variety of settings. The real-world applicability of the proposed test is illustrated using data from a study of biomarkers associated with myocardial infarction. Supplementary materials for this article are available online.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.901922 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:68:y:2014:i:3:p:158-169
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2014.901922
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().