EconPapers    
Economics at your fingertips  
 

Reference Class Forecasting: Resolving Its Challenge to Statistical Modeling

Robert F. Bordley

The American Statistician, 2014, vol. 68, issue 4, 221-229

Abstract: Statisticians generally consider statistical modeling superior (or at least a useful supplement) to experience-based intuition for estimating the outputs of a complex system. But recent psychological research has led to an enhancement of experience-based intuition known as reference class forecasting. The reference class forecasting approach has been championed as a superior alternative to statistical modeling and is already well-regarded in the planning community. This presents a challenge to statistical modeling. To address this challenge, this article uses a Bayesian approach for combining the reference class forecast and the model-based forecast. The Bayesian prior is informed by the reference class information. A likelihood function was constructed to reflect the model's information. This approach was used to estimate healthcare costs under a voluntary employee benefit association (VEBA). The resulting Bayesian posterior forecast had lower variance (and lower forecast error) than either the model-based forecast or the reference-class forecast.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.937544 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:68:y:2014:i:4:p:221-229

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2014.937544

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:68:y:2014:i:4:p:221-229