An Introduction to Practical Sequential Inferences via Single-Arm Binary Response Studies Using the binseqtest R Package
Jennifer L. Kirk and
Michael P. Fay
The American Statistician, 2014, vol. 68, issue 4, 230-242
Abstract:
We review sequential designs, including group sequential and two-stage designs, for testing or estimating a single binary parameter. We use this simple case to introduce ideas common to many sequential designs, which in this case can be explained without explicitly using stochastic processes. We focus on methods provided by our newly developed R package, binseqtest , which exactly bound the Type I error rate of tests and exactly maintain proper coverage of confidence intervals. Within this framework, we review some allowable practical adaptations of the sequential design. We explore issues such as the following: How should the design be modified if no assessment was made at one of the planned sequential stopping times? How should the parameter be estimated if the study needs to be stopped early? What reasons for stopping early are allowed? How should inferences be made when the study is stopped for crossing the boundary, but later information is collected about responses of subjects that had enrolled before the decision to stop but had not responded by that time? Answers to these questions are demonstrated using basic methods that are available in our binseqtest R package. Supplementary materials for this article are available online.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.951126 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:68:y:2014:i:4:p:230-242
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2014.951126
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().