EconPapers    
Economics at your fingertips  
 

The Promise of Prediction Contests

Phillip E. Pfeifer, Yael Grushka-Cockayne and Kenneth C. Lichtendahl

The American Statistician, 2014, vol. 68, issue 4, 264-270

Abstract: This article examines the prediction contest as a vehicle for aggregating the opinions of a crowd of experts. After proposing a general definition distinguishing prediction contests from other mechanisms for harnessing the wisdom of crowds, we focus on point-forecasting contests-contests in which forecasters submit point forecasts with a prize going to the entry closest to the quantity of interest. We first illustrate the incentive for forecasters to submit reports that exaggerate in the direction of their private information. Whereas this exaggeration raises a forecaster's mean squared error, it increases his or her chances of winning the contest. And in contrast to conventional wisdom, this nontruthful reporting usually improves the accuracy of the resulting crowd forecast. The source of this improvement is that exaggeration shifts weight away from public information (information known to all forecasters) and by so doing helps alleviate public knowledge bias. In the context of a simple theoretical model of overlapping information and forecaster behaviors, we present closed-form expressions for the mean squared error of the crowd forecasts which will help identify the situations in which point forecasting contests will be most useful.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2014.937545 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:68:y:2014:i:4:p:264-270

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2014.937545

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:68:y:2014:i:4:p:264-270