EconPapers    
Economics at your fingertips  
 

The Number of MCMC Draws Needed to Compute Bayesian Credible Bounds

Jia Liu, Daniel J. Nordman and William Q. Meeker

The American Statistician, 2016, vol. 70, issue 3, 275-284

Abstract: In the past 20 years, there has been a staggering increase in the use of Bayesian statistical inference, based on Markov chain Monte Carlo (MCMC) methods, to estimate model parameters and other quantities of interest. This trend exists in virtually all areas of engineering and science. In a typical application, researchers will report estimates of parametric functions (e.g., quantiles, probabilities, or predictions of future outcomes) and corresponding intervals from MCMC methods. One difficulty with the use of inferential methods based on Monte Carlo (MC) is that reported results may be inaccurate due to MC error. MC error, however, can be made arbitrarily small by increasing the number of MC draws. Most users of MCMC methods seem to use indirect diagnostics, trial-and-error, or guess-work to decide how long to run a MCMC algorithm and accuracy of MCMC output results is rarely reported. Unless careful analysis is done, reported numerical results may contain digits that are completely meaningless. In this article, we describe an algorithm to provide direct guidance on the number of MCMC draws needed to achieve a desired amount of precision (i.e., a specified number of accurate significant digits) for Bayesian credible interval endpoints.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2016.1158738 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:70:y:2016:i:3:p:275-284

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2016.1158738

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:275-284