EconPapers    
Economics at your fingertips  
 

Structural Equation Models for Dealing With Spatial Confounding

Hauke Thaden and Thomas Kneib

The American Statistician, 2018, vol. 72, issue 3, 239-252

Abstract: In regression analyses of spatially structured data, it is common practice to introduce spatially correlated random effects into the regression model to reduce or even avoid unobserved variable bias in the estimation of other covariate effects. If besides the response the covariates are also spatially correlated, the spatial effects may confound the effect of the covariates or vice versa. In this case, the model fails to identify the true covariate effect due to multicollinearity. For highly collinear continuous covariates, path analysis and structural equation modeling techniques prove to be helpful to disentangle direct covariate effects from indirect covariate effects arising from correlation with other variables. This work discusses the applicability of these techniques in regression setups, where spatial and covariate effects coincide at least partly and classical geoadditive models fail to separate these effects. Supplementary materials for this article are available online.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1305290 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:72:y:2018:i:3:p:239-252

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2017.1305290

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:72:y:2018:i:3:p:239-252