Small-Sample Confidence Intervals For Impulse Response Functions
Lutz Kilian
The Review of Economics and Statistics, 1998, vol. 80, issue 2, 218-230
Abstract:
Bias-corrected bootstrap confidence intervals explicitly account for the bias and skewness of the small-sample distribution of the impulse response estimator, while retaining asymptotic validity in stationary autoregressions. Monte Carlo simulations for a wide range of bivariate models show that in small samples bias-corrected bootstrap intervals tend to be more accurate than delta method intervals, standard bootstrap intervals, and Monte Carlo integration intervals. This conclusion holds for VAR models estimated in levels, as deviations from a linear time trend, and in first differences. It also holds for random walk processes and cointegrated processes estimated in levels. An empirical example shows that bias-corrected bootstrap intervals may imply economic interpretations of the data that are substantively different from standard methods. © 1998 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (657)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/003465398557465 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:80:y:1998:i:2:p:218-230
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().