EconPapers    
Economics at your fingertips  
 

Salat Postures Detection Using a Hybrid Deep Learning Architecture

Khalil Ur Rehman ()
Additional contact information
Khalil Ur Rehman: Department of Computer Sciences, School of Engineering and Applied Sciences, Bahria University Karachi Campus, Sindh, Pakistan

International Journal of Innovations in Science & Technology, 2023, vol. 5, issue 4, 609-625

Abstract: Salat, a fundamental act of worship in Islam, is performed five times daily. It entails a specific set of postures and has both spiritual and bodily advantages. Many people, notably novices and the elderly, may trouble with maintaining proper posture and remembering the sequence. Resources, instruction, and practice assist in addressing these issues, emphasizing the need of prayer sincerity. Our contribution in the research is two-fold as we have developed a new dataset for Salat posture detection and further a hybrid model MediaPipe+3DCNN. Dataset is developed of 46 individuals performing each of the three compulsory Salat postures of Qayyam, Rukku and Sajdah and model was trained and tested with 14019 images. Our current research is a solution for correct posture detection which can be used for all ages. We examined the MediaPipe library design as a methodology, which leverages a multistep detector machine learning pipeline that has been proven to work in our research. Using a detector, the pipeline first locates the person's region-of-interest (ROI) within the frame. The tracker then forecasts the pose landmarks and division mask in between the ROIs using the ROI cropped frame as input. A 3D convolutional neural network (3DCNN) wasalso utilized to extract features and classification from key-points retrieved from the Media Pipe architecture. With real-time evaluation, the newly built model provided 100% accuracy and a promising result. We analyzed different evaluation matrices suchas Loss, Precision, Recall, F1-Score, and area under the curve (AUC) to give validation process authenticity; the results are 0.03, 1.00, 0.01, 0.99, 1.00 and 0.95. accordingly.

Keywords: 3DCNN; HCI; Namaz posture; Salat gesture recognition (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journal.50sea.com/index.php/IJIST/article/view/581/1121 (application/pdf)
https://journal.50sea.com/index.php/IJIST/article/view/581 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:abq:ijist1:v:5:y:2023:i:4:p:609-625

Access Statistics for this article

International Journal of Innovations in Science & Technology is currently edited by Prof. Dr. Syed Amer Mahmood

More articles in International Journal of Innovations in Science & Technology from 50sea
Bibliographic data for series maintained by Iqra Nazeer ().

 
Page updated 2025-09-19
Handle: RePEc:abq:ijist1:v:5:y:2023:i:4:p:609-625