Consequences of Data Error in Aggregate Indicators: Evidence from the Human Development Index
Hendrik Wolff,
Howard Chong and
Maximilian Auffhammer
No 6502, CUDARE Working Papers from University of California, Berkeley, Department of Agricultural and Resource Economics
Abstract:
This paper examines the consequences of data error in data series used to construct aggregate indicators. Using the most popular indicator of country level economic development, the Human Development Index (HDI), we identify three separate sources of data error. We propose a simple statistical framework to investigate how data error may bias rank assignments and identify two striking consequences for the HDI. First, using the cutoff values used by the United Nations to assign a country as 'low', 'medium', or 'high' developed, we find that currently up to 45% of developing countries are misclassified. Moreover, by replicating prior development/macroeconomic studies, we find that key estimated parameters such as Gini coefficients and speed of convergence measures vary by up to 100% due to data error.
Keywords: Research; Methods/Statistical; Methods (search for similar items in EconPapers)
Pages: 36
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://ageconsearch.umn.edu/record/6502/files/wp081051.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ags:ucbecw:6502
DOI: 10.22004/ag.econ.6502
Access Statistics for this paper
More papers in CUDARE Working Papers from University of California, Berkeley, Department of Agricultural and Resource Economics Contact information at EDIRC.
Bibliographic data for series maintained by AgEcon Search ().