EconPapers    
Economics at your fingertips  
 

Truncated Variation, Upward Truncated Variation and Downward Truncated Variation of Brownian Motion with Drift - their Characteristics and Applications

Rafa{\l} {\L}ochowski

Papers from arXiv.org

Abstract: In the paper "On Truncated Variation of Brownian Motion with Drift" (Bull. Pol. Acad. Sci. Math. 56 (2008), no.4, 267 - 281) we defined truncated variation of Brownian motion with drift, $W_t = B_t + \mu t, t\geq 0,$ where $(B_t)$ is a standard Brownian motion. Truncated variation differs from regular variation by neglecting jumps smaller than some fixed $c > 0$. We prove that truncated variation is a random variable with finite moment-generating function for any complex argument. We also define two closely related quantities - upward truncated variation and downward truncated variation. The defined quantities may have some interpretation in financial mathematics. Exponential moment of upward truncated variation may be interpreted as the maximal possible return from trading a financial asset in the presence of flat commission when the dynamics of the prices of the asset follows a geometric Brownian motion process. We calculate the Laplace transform with respect to time parameter of the moment-generating functions of the upward and downward truncated variations. As an application of the obtained formula we give an exact formula for expected value of upward and downward truncated variations. We give also exact (up to universal constants) estimates of the expected values of the mentioned quantities.

Date: 2009-12, Revised 2011-12
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in (2011) Stochastic Process. Appl. 121, 378--393

Downloads: (external link)
http://arxiv.org/pdf/0912.4533 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0912.4533

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0912.4533