EconPapers    
Economics at your fingertips  
 

Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem

Maria B. Chiarolla and Giorgio Ferrari ()

Papers from arXiv.org

Abstract: We study a stochastic, continuous time model on a finite horizon for a firm that produces a single good. We model the production capacity as an Ito diffusion controlled by a nondecreasing process representing the cumulative investment. The firm aims to maximize its expected total net profit by choosing the optimal investment process. That is a singular stochastic control problem. We derive some first order conditions for optimality and we characterize the optimal solution in terms of the base capacity process, i.e. the unique solution of a representation problem in the spirit of Bank and El Karoui (2004). We show that the base capacity is deterministic and it is identified with the free boundary of the associated optimal stopping problem, when the coefficients of the controlled diffusion are deterministic functions of time. This is a novelty in the literature on finite horizon singular stochastic control problems. As a subproduct this result allows us to obtain an integral equation for the free boundary, which we explicitly solve in the infinite horizon case for a Cobb-Douglas production function and constant coefficients in the controlled capacity process.

Date: 2011-08, Revised 2013-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://arxiv.org/pdf/1108.4886 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1108.4886

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1108.4886