EconPapers    
Economics at your fingertips  
 

Two-factor capital structure models for equity and credit

Thomas R. Hurd and Zhuowei Zhou

Papers from arXiv.org

Abstract: We extend the now classic structural credit modeling approach of Black and Cox to a class of "two-factor" models that unify equity securities such as options written on the stock price, and credit products like bonds and credit default swaps. In our approach, the two sides of the stylized balance sheet of a firm, namely the asset value and debt value, are assumed to follow a two dimensional Markov process. Amongst models of this type we find examples that lead to derivative pricing formulas that are capable of reproducing the main features of well known equity models such as the variance gamma model, and at the same time reproducing the stylized facts about default stemming from structural models of credit risk. Moreover, in contrast to one-factor structural models, these models allow for much more flexible dependence between equity and credit markets. Two main technical obstacles to efficient implementation of these pricing formulas are overcome in our paper. The first obstacle stems from the barrier condition implied by the non-default of the firm, and is overcome by the idea of time-changing Brownian motion in a way that preserves the reflection principle for Brownian motion. The second obstacle is the difficulty of computing spread options: this is overcome by using results in recent papers that make efficient use of the two dimensional Fast Fourier Transform.

Date: 2011-10
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1110.5846 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1110.5846

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1110.5846