EconPapers    
Economics at your fingertips  
 

Exponential L\'evy-type models with stochastic volatility and stochastic jump-intensity

Matthew Lorig and Oriol Lozano-Carbass\'e

Papers from arXiv.org

Abstract: We consider the problem of valuing a European option written on an asset whose dynamics are described by an exponential L\'evy-type model. In our framework, both the volatility and jump-intensity are allowed to vary stochastically in time through common driving factors -- one fast-varying and one slow-varying. Using Fourier analysis we derive an explicit formula for the approximate price of any European-style derivative whose payoff has a generalized Fourier transform; in particular, this includes European calls and puts. From a theoretical perspective, our results extend the class of multiscale stochastic volatility models of \citet*{fpss} to models of the exponential L\'evy type. From a financial perspective, the inclusion of jumps and stochastic volatility allow us to capture the term-structure of implied volatility. To illustrate the flexibility of our modeling framework we extend five exponential L\'evy processes to include stochastic volatility and jump-intensity. For each of the extended models, using a single fast-varying factor of volatility and jump-intensity, we perform a calibration to the S&P500 implied volatility surface. Our results show decisively that the extended framework provides a significantly better fit to implied volatility than both the traditional exponential L\'evy models and the fast mean-reverting stochastic volatility models of \citet{fpss}.

Date: 2012-05, Revised 2013-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1205.2398 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1205.2398

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1205.2398