EconPapers    
Economics at your fingertips  
 

Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing

Devang Sinha and Siddhartha P. Chakrabarty

Papers from arXiv.org

Abstract: In this paper, we propose and analyze a novel combination of multilevel Richardson-Romberg (ML2R) and importance sampling algorithm, with the aim of reducing the overall computational time, while achieving desired root-mean-squared error while pricing. We develop an idea to construct the Monte-Carlo estimator that deals with the parametric change of measure. We rely on the Robbins-Monro algorithm with projection, in order to approximate optimal change of measure parameter, for various levels of resolution in our multilevel algorithm. Furthermore, we propose incorporating discretization schemes with higher-order strong convergence, in order to simulate the underlying stochastic differential equations (SDEs) thereby achieving better accuracy. In order to do so, we study the Central Limit Theorem for the general multilevel algorithm. Further, we study the asymptotic behavior of our estimator, thereby proving the Strong Law of Large Numbers. Finally, we present numerical results to substantiate the efficacy of our developed algorithm.

Date: 2022-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2209.00821 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.00821

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2209.00821