Comment on "Generic machine learning inference on heterogeneous treatment effects in randomized experiments."
Kosuke Imai and
Michael Lingzhi Li
Papers from arXiv.org
Abstract:
We analyze the split-sample robust inference (SSRI) methodology proposed by Chernozhukov, Demirer, Duflo, and Fernandez-Val (CDDF) for quantifying uncertainty in heterogeneous treatment effect estimation. While SSRI effectively accounts for randomness in data splitting, its computational cost can be prohibitive when combined with complex machine learning (ML) models. We present an alternative randomization inference (RI) approach that maintains SSRI's generality without requiring repeated data splitting. By leveraging cross-fitting and design-based inference, RI achieves valid confidence intervals while significantly reducing computational burden. We compare the two methods through simulation, demonstrating that RI retains statistical efficiency while being more practical for large-scale applications.
Date: 2025-02
New Economics Papers: this item is included in nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2502.06758 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.06758
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().