EconPapers    
Economics at your fingertips  
 

Bankruptcy analysis using images and convolutional neural networks (CNN)

Luiz Tavares, Jose Mazzon, Francisco Paletta and Fabio Barros

Papers from arXiv.org

Abstract: The marketing departments of financial institutions strive to craft products and services that cater to the diverse needs of businesses of all sizes. However, it is evident upon analysis that larger corporations often receive a more substantial portion of available funds. This disparity arises from the relative ease of assessing the risk of default and bankruptcy in these more prominent companies. Historically, risk analysis studies have focused on data from publicly traded or stock exchange-listed companies, leaving a gap in knowledge about small and medium-sized enterprises (SMEs). Addressing this gap, this study introduces a method for evaluating SMEs by generating images for processing via a convolutional neural network (CNN). To this end, more than 10,000 images, one for each company in the sample, were created to identify scenarios in which the CNN can operate with higher assertiveness and reduced training error probability. The findings demonstrate a significant predictive capacity, achieving 97.8% accuracy, when a substantial number of images are utilized. Moreover, the image creation method paves the way for potential applications of this technique in various sectors and for different analytical purposes.

Date: 2025-01
New Economics Papers: this item is included in nep-ent and nep-sbm
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2502.15726 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2502.15726

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-25
Handle: RePEc:arx:papers:2502.15726