EconPapers    
Economics at your fingertips  
 

The Role of Deep Learning in Financial Asset Management: A Systematic Review

Pedro Reis, Ana Paula Serra and Jo\~ao Gama

Papers from arXiv.org

Abstract: This review systematically examines deep learning applications in financial asset management. Unlike prior reviews, this study focuses on identifying emerging trends, such as the integration of explainable artificial intelligence (XAI) and deep reinforcement learning (DRL), and their transformative potential. It highlights new developments, including hybrid models (e.g., transformer-based architectures) and the growing use of alternative data sources such as ESG indicators and sentiment analysis. These advancements challenge traditional financial paradigms and set the stage for a deeper understanding of the evolving landscape. We use the Scopus database to select the most relevant articles published from 2018 to 2023. The inclusion criteria encompassed articles that explicitly apply deep learning models within financial asset management. We excluded studies focused on physical assets. This review also outlines our methodology for evaluating the relevance and impact of the included studies, including data sources and analytical methods. Our search identified 934 articles, with 612 meeting the inclusion criteria based on their focus and methodology. The synthesis of results from these articles provides insights into the effectiveness of deep learning models in improving portfolio performance and price forecasting accuracy. The review highlights the broad applicability and potential enhancements deep learning offers to financial asset management. Despite some limitations due to the scope of model application and variation in methodological rigour, the overall evidence supports deep learning as a valuable tool in this field. Our systematic review underscores the progressive integration of deep learning in financial asset management, suggesting a trajectory towards more sophisticated and impactful applications.

Date: 2025-03
New Economics Papers: this item is included in nep-for
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2503.01591 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.01591

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2503.01591