Entropy-Assisted Quality Pattern Identification in Finance
Rishabh Gupta,
Shivam Gupta,
Jaskirat Singh and
Sabre Kais
Papers from arXiv.org
Abstract:
Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain. Patterns that lead to high one-sided movements in historical data, yet retain low local entropy, are more informative in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMM), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies.
Date: 2025-03
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2503.06251 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.06251
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().