EconPapers    
Economics at your fingertips  
 

Minnesota BART

Pedro A. Lima, Carlos M. Carvalho, Hedibert F. Lopes and Andrew Herren

Papers from arXiv.org

Abstract: Vector autoregression (VAR) models are widely used for forecasting and macroeconomic analysis, yet they remain limited by their reliance on a linear parameterization. Recent research has introduced nonparametric alternatives, such as Bayesian additive regression trees (BART), which provide flexibility without strong parametric assumptions. However, existing BART-based frameworks do not account for time dependency or allow for sparse estimation in the construction of regression tree priors, leading to noisy and inefficient high-dimensional representations. This paper introduces a sparsity-inducing Dirichlet hyperprior on the regression tree's splitting probabilities, allowing for automatic variable selection and high-dimensional VARs. Additionally, we propose a structured shrinkage prior that decreases the probability of splitting on higher-order lags, aligning with the Minnesota prior's principles. Empirical results demonstrate that our approach improves predictive accuracy over the baseline BART prior and Bayesian VAR (BVAR), particularly in capturing time-dependent relationships and enhancing density forecasts. These findings highlight the potential of developing domain-specific nonparametric methods in macroeconomic forecasting.

Date: 2025-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2503.13759 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.13759

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2503.13759