EconPapers    
Economics at your fingertips  
 

Role of AI Innovation, Clean Energy and Digital Economy towards Net Zero Emission in the United States: An ARDL Approach

Adita Sultana, Abdullah Al Abrar Chowdhury, Azizul Hakim Rafi and Abdulla All Noman

Papers from arXiv.org

Abstract: The current paper investigates the influences of AI innovation, GDP growth, renewable energy utilization, the digital economy, and industrialization on CO2 emissions in the USA from 1990 to 2022, incorporating the ARDL methodology. The outcomes observe that AI innovation, renewable energy usage, and the digital economy reduce CO2 emissions, while GDP expansion and industrialization intensify ecosystem damage. Unit root tests (ADF, PP, and DF-GLS) reveal heterogeneous integration levels amongst components, ensuring robustness in the ARDL analysis. Complementary methods (FMOLS, DOLS, and CCR) validate the results, enhancing their reliability. Pairwise Granger causality assessments identify strong unidirectional connections within CO2 emissions and AI innovation, as well as the digital economy, underscoring their significant roles in ecological sustainability. This research highlights the requirement for strategic actions to nurture equitable growth, including advancements in AI technology, green energy adoption, and environmentally conscious industrial development, to improve environmental quality in the United States.

Date: 2025-03
References: Add references at CitEc
Citations:

Published in Journal of Environmental and Energy Economics, 2025

Downloads: (external link)
http://arxiv.org/pdf/2503.19933 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2503.19933

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-27
Handle: RePEc:arx:papers:2503.19933