Convergence of the Markovian iteration for coupled FBSDEs via a differentiation approach
Zhipeng Huang and
Cornelis W. Oosterlee
Papers from arXiv.org
Abstract:
In this paper, we investigate the Markovian iteration method for solving coupled forward-backward stochastic differential equations (FBSDEs) featuring a fully coupled forward drift, meaning the drift term explicitly depends on both the forward and backward processes. An FBSDE system typically involves three stochastic processes: the forward process $X$, the backward process $Y$ representing the solution, and the $Z$ process corresponding to the scaled derivative of $Y$. Prior research by Bender and Zhang (2008) has established convergence results for iterative schemes dealing with $Y$-coupled FBSDEs. However, extending these results to equations with $Z$ coupling poses significant challenges, especially in uniformly controlling the Lipschitz constant of the decoupling fields across iterations and time steps within a fixed-point framework. To overcome this issue, we propose a novel differentiation-based method for handling the $Z$ process. This approach enables improved management of the Lipschitz continuity of decoupling fields, facilitating the well-posedness of the discretized FBSDE system with fully coupled drift. We rigorously prove the convergence of our Markovian iteration method in this more complex setting. Finally, numerical experiments confirm our theoretical insights, showcasing the effectiveness and accuracy of the proposed methodology.
Date: 2025-04
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2504.02814 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2504.02814
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().